
Manuscript submitted to Roy RatcliffeBlog
Article

Lua Thread Pool
Roy Ratcliffe,*

*Correspondence: roy@ratcliffe.me

ABSTRACT Lua co-routines usefully support multi-threading without preemption. This article presents a simple but
powerful thread module that unmasks some of the hidden subtleties and adds a call-back feature that allows for multiple
overlapping responders to threaded results for improved software decomposition.

INTRODUCTION
This article starts with the implementation and works
back through the design along with explanations to ac-
count for the details, and some examples.

LUA MODULE
Cutting a long story short, the Lua thread-pool mod-
ule’s ‘undressed source’ lists below. No comments or
documentation, just the naked code appears.

Sometimes seeing only the trees proves useful, and
quickly lets the developer assess the pros and cons. Soft-
ware always has positives and negatives; no perfect en-
gineering solution exists except perhaps as myth.

local thread = {}

local threadpoolt = {
__index = {}

}

function threadpoolt.__index:fork(forked)
local co = coroutine.create(forked)
self[co] = {}
return co

end

function threadpoolt.__index:on(co, callback)
table.insert(self[co], callback)
return co

end

function threadpoolt.__index:success(co, callback)
return self:on(co, function(status, ...)

if status then callback(...) end
end)

end

function threadpoolt.__index:failure(co, callback)
return self:on(co, function(status, ...)

if not status then callback(...) end
end)

end

local function call(callbacks, ...)
local indices = {}
for i, callback in ipairs(callbacks) do

if not pcall(callback, ...) then
table.insert(indices, 1, i)

end
end
for _, i in ipairs(indices) do

table.remove(callbacks, i)
end
return ...

end

function threadpoolt.__index:call(co, ...)
return call(self[co], coroutine.resume(co, ...))

end

function threadpoolt.__index:continue()
for co, callbacks in pairs(self) do

call(callbacks, coroutine.resume(co))
end

end

function threadpoolt.__index:reap()
for co, _ in pairs(self) do

if coroutine.status(co) == "dead" then
self[co] = nil

end
end
return next(self) == nil

end

function thread.pool()
return setmetatable({}, threadpoolt)

end

return thread

Listing complete, super simple. Function thread.pool
builds a new pool of threads.

THREAD POOL DESIGN
Object design below in Universal Modelling Language
(UML).

Figure 1: Thread pool class diagram

Manuscript submitted to Roy Ratcliffe Blog 1



Roy Ratcliffe

The order of the methods generally follows the typ-
ical usage ordering; that of:

(1) fork first,
(2) set up call-backs,
(3) make the initial call with arguments,
(4) continue and reap.

Notice the class diagram’s composition and ag-
gregation association markers. The pool composes
threads; the call-back functions aggregate with those
threads. The latter association applies more loosely. A
pool’s threads cannot exist without the pool but the
call-backs can, conceptually speaking.

LUA DETAILS
Some important details require expansion notwithstand-
ing:

• the module definition,
• first use of the call method,
• last result by returning not by yielding, and finally
• protected call-back functions.

Local Table for Module
The implementation uses the preferred module defini-
tion prologue and epilogue forms. Other dependent mod-
ules, as well as the global application sources, can access
the module using Lua’s require as normal, assigning
the result locally, using any arbitrary local name. The
module names and returns the module table as thread
internally, rather than use a pseudonym such as _M.

If a typical usage applies the statement:

local thread = require "thread"

Given that, then a new pool constructs using a
thread.pool() call.

First Call
The first call invokes the call-back functions before the
first pool continue operation. This important fact re-
quires that responding call-backs need setting up before
the first call.

Last Result
The last result does not matter if the thread contin-
ues indefinitely. It only matters if the thread yields
some useful results and subsequently returns, i.e. exits
the thread. Such cases should remain aware that the fi-
nal return counts as a successful continuation; function

coroutine.resume(co) returns true for returning co-
routine co, in technical terms. Hence the final return
triggers the success call-backs.

Success and Failure Call-Back Functions
Methods on, success and failure answer their thread
argument in order to allow for chaining. This allows the
following chain.

pool:call(pool:success(pool:fork(function(s)
for a in string.gmatch(s, "%a") do

coroutine.yield(a)
end
return "world"

end), print), "hello")

Fork a function as a co-routine; in this contrived ex-
ample, match and yield letters from string ‘hello’ then fi-
nally resulting in “world” string. Connect a success call-
back function, standard-library print. Make the first
call with arguments, the string to match against.

Call-back functions run as protected calls and disap-
pear from the thread call-back association if and when
the call fails with error. Protection is essential; it im-
plies that pool continuation runs without error despite
responder errors. But it also implies that the responders
cannot themselves yield.

Next Nil
Lua’s # operator does not answer the size of a given
table. Rather, it gives the highest numerical index cur-
rently present within a given table. Sometimes that re-
sult matches the size of the table but sometimes not.

For example,

#{"a"}

correctly answers 1 as one might expect. However,

#{["a"] = 1}

unexpectedly answers 0 because there is no “highest
numerical index.”

Lua does nevertheless let you test for an empty table
using next; a nil answer occurs for empty tables, non-
nil for non-empty.

CAVEATS AND IMPLEMENTATION
DETAILS
Thread pool users must create a Lua co-routine using
the fork method, even though it primarily just creates a

2 Manuscript submitted to Roy Ratcliffe Blog



Lua Thread Pool

co-routine using coroutine.create from the Lua stan-
dard library. Forking does however add an extra dimen-
sion: it registers the resulting thread with the pool. You
cannot bind a call-back to a thread that has not regis-
tered with the pool; attempting to run on with a non-
forked thread or a thread created by some other pool
will fail. Applications may have a need for more than
one pool of threads, one for servicing socket requests,
another for periodic continuations for instance; applica-
tions might even construct a tree of pools under some
scenarios. So call this ‘fork only feature’ a design con-
straint limitation.

Internally the module utilises co as the symbol for
a co-routine, a thread; this approach disambiguates a
thread instance from the usage of thread as the name of
the module. Doing so also immitates the Lua coroutine
standard library which also employs co for thread types.

USAGE
Example usage below.

local thread = require "thread"

local pool = thread.pool()

local co = pool:fork(function(a, b)
for i = a, b - 1 do

coroutine.yield(i)
end
return b

end)

pool:on(co, function(status, ...)
error("oops")

end)

pool:success(co, print)
pool:failure(co, function(...)

print("failure")
end)

pool:call(co, 1, 10)

repeat
pool:continue()

until pool:reap()

It outputs 1 through 10 inclusive but some impor-
tant features require explanation.

• Calling pool:call(co, 1, 10) both passes the
arguments (1 and 10) and also runs the thread
until its first co-routine yield. In short, it starts.

• Returning succeeds for one final resume. Notice

the for-loop yields for all except the last. The func-
tion returns the last result using return and not
by yielding.

• The call-back function that raises an ‘oops’ error
fails and disappears from the call-back chain.

CONCLUSIONS
Connection from co-routine to call-back is a useful fea-
ture though strictly not necessary in many scenarios.
Co-routines often yield nothing. Yielding itself is a use-
ful act; it allows other threads to continue. Connect-
ing a sequence of call-back functions lets an application
further decompose and simplify arbitrary behaviours—
always a good thing. Instead of interlacing behaviours
with yields, the application architect can functionally
decompose the yielder function from its result respon-
der functions based on success and failure along with
the results themselves.

Manuscript submitted to Roy Ratcliffe Blog 3


	Introduction
	Lua Module
	Thread Pool Design
	Lua Details
	Local Table for Module
	First Call
	Last Result
	Success and Failure Call-Back Functions
	Next Nil

	Caveats and Implementation Details
	Usage
	Conclusions

