
Mailboxes on FreeRTOS

Roy Ratcliffe

Abstract

FreeRTOS equips a message buffer and a task abstraction for building embedded systems. Erlang’s Open Telephony
Platform demonstrates a simple but very powerful abstraction for decomposing concurrent software. This article
presents a purely functional implementation of a concurrent system mailbox for lightweight, low-footprint embed-
ded usage via FreeRTOS.

Keywords: C, FreeRTOS, Erlang

1. Erlang’ian Mailboxes

Erlang’s Open Telephony Platform (OTP) is legendary for its robustness and resilience1. It lives by the motto, “Let
it crash.” Erlang itself as a language recapitulates Prolog. Think of Erlang as Prolog without trail-stack backtracking
but with term unification. The OTP layer built using Erlang adds a lightweight, low-memory footprint with low-
overhead scheduling2.

The entire OTP system sits on top of the mailbox processor concept. Is it possible, is it practical, to mimic the
mailbox processor for embedded systems using FreeRTOS?

2. FreeRTOS Mailbox

Is it possible? The short answer is: yes indeed! The result is quite straightforward and requires only around 150
lines of C. See Gist. The implementation reuses the FreeRTOS message buffer as a messaging mechanism combined
with thin Message Pack wrappers for binding and unifying messages.

Figure 1 below depicts an Erlang-style mailbox for FreeRTOS. The mailbox is just a message buffer with a task—not
muchmore than that. The figure draws the mailbox using UnifiedModelling Language as a conceptual class diagram
although the implementation for FreeRTOS is purely functional C. The diagram simplifies the function names for
brevity and clarity, send_msg becomes xMailboxSendMsg in reality.

2.1. Spawn and Link

Fundamentally, the mailbox-oriented system builds a linked tree of mailbox processors acting as concurrent mes-
saging handlers. The structure allows for actor decomposition.

Construct and start a mailbox processor using:

∗Corresponding author
Email address: roy@ratcliffe.me (Roy Ratcliffe)

1Robustness and resilience sound like the same thing. However, one is proactive the other reactive: how easily can a system fall down versus
how well it recovers when something untoward happens.

2No locking via semaphores and critical sections is required.

“By hacking code for itself, don’t you see. Deriving pleasure from the gift of pure coding.”—Wise Martian

https://www.erlang.org/doc/system_architecture_intro/sys_arch_intro.html
https://gist.github.com/royratcliffe/8dcac1f78ce929afbe34eca4f544718c
https://en.wikipedia.org/wiki/Actor_model


Figure 1: Mailbox, Binding, Unifier and Task abstractions

MailboxHandle_t xMailbox = xMailboxNew();
xMailboxSpawn(xMailbox, prvEchoMailboxTask, "echo");

Spawning starts its associated processor task, a normal FreeRTOS task albeit with a built-in mailbox.

The mailbox processing task implementation eats messages.

static portTASK_FUNCTION(prvEchoMailboxTask, pvParameters) {
vMailboxSetUp(pvParameters);
MsgBindingHandle_t xMsgBinding = xMsgBindingNew();
MsgUnifierHandle_t xMsgUnifier = xMsgUnifierNew();
for (;;) {
uint32_t ulNotified;
xTaskNotifyWait(0UL, ULONG_MAX, &ulNotified, portMAX_DELAY);
if (ulNotified & mailboxSENT_NOTIFIED)
// Pattern-match the mailbox messages one by one. Do not wait for
// additional messages, hence no ticks to wait.
while (xMailboxReceiveMsg(NULL, xMsgUnifier, 0UL)) {
if (xMsgUnify(xMsgUnifier) != eMsgUnifySuccess)
continue;

// Match an optional mailbox sender handle but not by sending to itself.
// Perform a basic sanity check. The sender must not be the receiver.
MailboxHandle_t xMailbox;
if (xMsgUnifyMailbox(xMsgUnifier, &xMailbox)) {
if (xMailbox == xMailboxSelf())
continue;

2



if (xMsgUnify(xMsgUnifier) != eMsgUnifySuccess)
continue;

} else
xMailbox = NULL;

// Handle ping by sending back pong.
if (xMsgUnifyStrCmp(xMsgUnifier, "ping")) {
if (xMailbox) {
vMsgBindingClear(xMsgBinding);
xMsgBindStr(xMsgBinding, "pong");
xMailboxSendMsg(xMailbox, xMsgBinding, portMAX_DELAY);
xMailboxSent(xMailbox);

}
continue;

}
}

}
vMsgUnifierDestroy(xMsgUnifier);
vMsgBindingDestroy(xMsgBinding);
vMailboxTearDown();
vTaskDelete(NULL);

}

The processor handles messages by unifying the message stream sequentially and maintains structured concur-
rency. It interfaces with other, non-streaming events, by waiting for general notifications. The message “sent”
notification is one of many other possibilities. Other notifications might include asynchronous hardware events
triggered by interrupt-service routines.

2.2. Bind and Unify Using MsgPack

Messages have an arbitrary type, including compound types: strings, integers, floats, arrays, maps and any combi-
nations thereof. Build messages by binding specific values. Unpack messages by unifying expected types. “Actual”
message contents may fail to match the expected. That allows for unification and future-proof message develop-
ment, embuing an embedded architecture with event streaming properties and commensurate benefits. Kafka, Akka,
ActiveMQ, RabbitMQ and others adopt such an architecture for its scalable concurrency benefits. The event becomes
the locus of functionality and the development building block for backwardly-compatible unification.

Sending a message requires a ‘binding’ and looks like this.

// Ping the echo mailbox. Bind a task handle followed by a string.
// Send the message then notify.
MsgBindingHandle_t xMsgBinding = xMsgBindingNew();
xMsgBindMailbox(xMsgBinding, NULL);
xMsgBindStr(xMsgBinding, "ping");
xMailboxSendMsg(xMailbox, xMsgBinding, portMAX_DELAY);
vMsgBindingDestroy(xMsgBinding);
xMailboxSent(xMailbox);

This snippet destroys the binding after sending the message because the sender no longer requires it; the binding
has already coded the packed message so not needed. The sender could also retain the binding for reuse by clearing
it. The binding process progressively builds up an internal message buffer of packed messages.

3



Unification reverses the binding process: bytes in, message components out. The concept originates with first-
order logic, [1]. Fundamentally, ‘unifying’ expectations with actual message contents involves a matching case
block. The snippet from the previous extract illustrates:

while (xMailboxReceiveMsg(NULL, xMsgUnifier, 0UL)) {
if (xMsgUnify(xMsgUnifier) != eMsgUnifySuccess)
continue;

if (xMsgUnifyStrCmp(xMsgUnifier, "ping")) {
// handle ping
continue;

}
}

Read pendingmessages from themailbox. Attempt a unification. Throw away failed messages; they are unification
mismatches, future as-yet-unknown types. Handle when the message stream matches an expectation—pong when
pinged, in this case.

3. Conclusions

Dependencies include a message binding and unifier mechanism. Message Pack is used in the supplied implemen-
tation. The C library is small, fast and flexible even for complex messages such as arrays and maps. In pure logic,
the Message Pack protocol reduces to simple predicates.

It is not the most trivial encoding technique. Sending pure strings would be an alternative, for example; the sender
could printf a message and the receiver could scanf the messages. Message Packing does nevertheless allow for
fast unification over complex types because the ‘type’ encodes first and matches first which amounts to a simple
8-bit comparison. If types match, length comes next and that amounts to a fast integer comparison. Only thereafter
the contents compare by early-out matching over the encoded size.

While not the only transcoding technique, Message Pack supplies a very useful embed-friendly compromise of
competing requirements, proving fast, compact and flexible. Its approach implicitly encodes type information mak-
ing full or partial unification very fast. Handling quickly collapses to success or failure; success quickly focuses on
the type and its contents—ideal for partial matching.

The default C implementation of the Message Pack library uses large buffer-size defaults, see Table 1. In practice,
these sizes far exceed the capacity and needs of an embedded system. Hence 8K becomes more like 256 bytes for this
style of usage (right shift by five). The unpacker sizes need even less: 128 and 64 bytes respectively for the initial
and reserve sizes.

Table 1: Sizes of Message Pack buffers and chunks

Manifest constant Default

MSGPACK_SBUFFER_INIT_SIZE 8K
MSGPACK_UNPACKER_INIT_BUFFER_SIZE 64K
MSGPACK_UNPACKER_RESERVE_SIZE 32K
MSGPACK_VREFBUFFER_CHUNK_SIZE 8K
MSGPACK_ZBUFFER_INIT_SIZE 8K
MSGPACK_ZBUFFER_RESERVE_SIZE 512
MSGPACK_ZONE_CHUNK_SIZE 8K

4

https://msgpack.org/
https://www.swi-prolog.org/pack/list?p=msgpackc


The proposed implementation also relies on offsetof C compiler extension in order to navigate by offset from a
list item to its container. Most if not all modern C compilers supply a built-in version.

FreeRTOS makes mailbox decomposition easy: one message buffer, one task. The implementation relies on FreeR-
TOS thread-local storage for linking a task to its mailbox. Apart from concurrency, the paradigm acts as a structural
decomposition technique and there useful for wrapping system components in general. If you need interacting
concurrency within your embedded system, this approach is not the worst by far.

4. Future Work

“Atoms” would be a handy abstraction for future development (reference for atoms). Atoms are string constants
passed by reference. Matching references implies matching a string and obviates the need for string comparisons.
They could pack and unpack using the Message Pack extension @ type3.

References

[1] F. Baader, W. Snyder, Unification Theory, handbook of automated reasoning (2001).
URL https://www.cs.bu.edu/fac/snyder/publications/UnifChapter.pdf

3ASCII code 6410

5

https://en.cppreference.com/w/cpp/types/offsetof
https://www.cs.bu.edu/fac/snyder/publications/UnifChapter.pdf
https://www.cs.bu.edu/fac/snyder/publications/UnifChapter.pdf

	Erlang'ian Mailboxes
	FreeRTOS Mailbox
	Spawn and Link
	Bind and Unify Using MsgPack

	Conclusions
	Future Work

