
PX4 on H7

Roy Ratcliffe1,∗

Abstract

PX4 Autopilot firmware project offers a sophisticated system for drone flight management. This article explores the
major bumps and bends that a developer might first encounter when launching a project based on PX4. The development
platform is Windows 11 running Windows Subsystem for Linux 2 running Ubuntu Jammy. For evaluation, the article
troubleshoots PX4 using a STM32H747I-DISCO evaluation board by ST.

What is PX4? At its most abstract, PX4 Autopilot is an
open-source multi-architecture tool for developing drone
flight management firmware.

1. Discovery

ST’s STM32 H747I Discovery is an evaluation board
based on the STM32H747xI dual-core embedded system-
on-chip. The H747 series sandwiches an ARM Cortex M7
and M4 with a plethora of on-chip peripherals. NuttX
carries support for this board ‘out of the box’ although
it does not utilise the standard ST-manufacturer’s hard-
ware abstraction layer (HAL) but instead deploys its own
NuttX µHAL.

Setting it up has a few “gotcha” moments, however. The
following sections describe tips, tricks and other useful
lessons learnt while developing a basic BSP for the H7;
this is just a smaller subset of the entire corpus of tricks
but serves as the highlights.

1.1. ARM Toolchain Series
The PX4 Autopilot firmware is a CMake project with spe-

cific toolchain version requirements. Successful and noise-
less builds require an older version of Kitware’s CMake,
version 3.16.2. Later versions trigger a policy warn-
ing about Python package macros. The ARM compiler
toolchain similarly fires warnings and errors with the lat-
est versions2. The firmware utilises 9-series3 ARM com-
piler version 9.3.1 for canonical compilation.

Later versions of the toolchain separate standard library
headers for example; hence the compiler does not supply

∗Corresponding author
Email address: roy@ratcliffe.me (Roy Ratcliffe)

1See more at GitHub.
2Missing math.h and fabsf for example.
3ARM publish the patched 9-series as 9-2020-q2-update corre-

sponding to 9.3.1. Install it by downloading the tarball and unzip-
ping it then applying sudo tar -C /opt -xjf to the tarball. Append
the installation’s bin directory to the search path.

the standard math.h header. Smoother for development if
the build picks up a more compatible version of the com-
piler toolchain until the project progresses to allow for the
use of more up-to-date toolchain versions without break-
ages.

1.2. Board Support Package (BSP)

A minimal BSP lays out within the project as follows.

boards/stm32/h747i-disco/
��� default.px4board
��� nuttx-config
� ��� include
� ��� nsh
� � ��� defconfig
� ��� src
��� src

��� CMakeLists.txt

Files with extension px4board define the board. The
build system searches for these in order to find all available
boards to configure and build.

At a minimum, before configuring the board, the default
NuttX configuration needs to know the architecture and
the location of the custom-board directory.

CONFIG_ARCH="arm"
CONFIG_ARCH_BOARD_CUSTOM=y
CONFIG_ARCH_BOARD_CUSTOM_DIR="../../../../boards/stm32/h747i-disco/nuttx-config"
CONFIG_ARCH_BOARD_CUSTOM_DIR_RELPATH=y

Running the text-based menu configuration tool now
works. The build system fails without the ARM architec-
ture configuration. Circular requirements exist: configu-
ration depends on the architecture; the build tooling for
configuration needs to know the architecture before con-
figuration. The developer must first ‘bootstrap’ the build
with at least the general architecture, ARM architecture
in this case. The following make commands succeed by
launching menu-driven configuration tools.

“By hacking code for itself, don’t you see. Deriving pleasure from the gift of pure coding.”—Wise Martian August 20, 2023

https://px4.io/
https://github.com/royratcliffe
https://developer.arm.com/downloads/-/gnu-rm
https://developer.arm.com/-/media/Files/downloads/gnu-rm/9-2020q2/gcc-arm-none-eabi-9-2020-q2-update-x86_64-linux.tar.bz2


make stm32_h747i-disco menuconfig
make stm32_h747i-disco boardconfig

Target menuconfig launches the NuttX configurator
while boardconfig launches the PX4 board configurator.
See Figure 1 and Figure 2.

Figure 1: NuttX configuration menu

Figure 2: PX4 board configuration

1.3. Version Tag
The build system needs to see Git tags of the form

𝑣𝑚𝑎𝑗𝑜𝑟.𝑚𝑖𝑛𝑜𝑟.𝑝𝑎𝑡𝑐ℎ − 𝑑𝑒𝑣 otherwise it fails. Pull the remote
tags if not already pulled.

1.4. Board Header
Builds always fail with various errors without three es-

sential board_config.h header includes:

#include <stm32.h>
#include <px4_platform_common/px4_config.h>
#include <px4_platform_common/board_common.h>

All sorts of issues arise without including the PX4 config-
uration and the common board header—too many to de-
scribe in any detail—suffice it to say that these included
headers act as bridges between the various PX4 sub-layers.
Without them appearing in the board configuration, vari-
ous PX4 platform-oriented components and µHAL depen-
dencies collide with sundry unresolved enumerations, de-
fines and function prototypes. The board configuration
header glues the disparate layer of software together.

1.5. Board-Level Drivers
Linking the firmware fails without two important li-

braries:

ld: cannot find -lromfs
ld: cannot find -ldrivers_board

NuttX needs configuring with ROMFS filesystem support
in order to resolve the romfs dependency.

“Drivers board” library refers to drivers for the board
customisation. The sources already exist but within the
NuttX ‘platform boards’ not within the PX4 upper layer.
They belong to the PX4 NuttX repository at GitHub. The
build system does not automatically find these sources
and set them up for compiling and linking with the
firmware. They need to be picked out and added to the
drivers_board library.

These out-of-the-box board drivers compile with errors,
however. The compiler complains about the comparison
of integer expressions of different signedness: ‘int’ and ‘un-
signed int’4.

for (i = 0; i < ARRAYSIZE(g_ledmap); i++)

This needs correcting but the fix lives in a Git submodule
as part of the NuttX repository. The proper fix would
require a successful pull request applied to that repository.
Tempting to create one. As an interim workaround, the
custom drivers can copy and patch the offending sources.

1.6. Serial Ports
Compiling fails without at least one UART equipped at

the NuttX layer. Just configure one using the NuttX con-
figuration tool.

CONFIG_STM32H7_USART1=y

NuttX equips serial-driver support by default but it does
not enable any UART devices. The compiler sees an error.

1.7. Firmware Prototype
As a final version-stamping step, the PX4 build system

converts the linked ELF to PX4 format using its custom
px_mkfw tool. This step requires a firmware.prototype
JSON file that describes the board assigning a board iden-
tifier together with other summary information.

{
"board_id": 999,
"magic": "PX4FWv0",
"description": "Firmware for STM32H747I Discovery",
"image": "",

4-Werror=sign-compare

2

https://github.com/PX4/NuttX/tree/px4_firmware_nuttx-10.3.0%2B/boards/arm/stm32h7/stm32h747i-disco


"build_time": 0,
"summary": "STM32H747I-DISCO",
"version": "0.1",
"image_size": 0,
"image_maxsize": 2080768,
"git_identity": "",
"board_revision": 0

}

1.8. General Tricks
Cleaning up the repo clone and its sub-modules to restart

the firmware cleanly using git clean.

git clean -fdx
git submodule foreach --recursive git clean -fdx

Update all the submodules using:

make submodulesupdate

2. Results

The result is a minimal set of firmware for running PX4
autopilot on the H747I Discovery evaluation board by
reusing the existing NuttX configuration and source files:
ideal for evaluating a design without pre-loaded features
standing in the way.

[373/375] Linking CXX executable stm32_h747i-disco_default.elf
Memory region Used Size Region Size %age Used

itcm: 0 GB 64 KB 0.00%
flash: 22452 B 2 MB 1.07%
dtcm1: 0 GB 64 KB 0.00%
dtcm2: 0 GB 64 KB 0.00%
sram: 2288 B 512 KB 0.44%

sram1: 0 GB 128 KB 0.00%
sram2: 0 GB 128 KB 0.00%
sram3: 0 GB 32 KB 0.00%
sram4: 0 GB 64 KB 0.00%
bbram: 0 GB 4 KB 0.00%

It also flashes, runs and debugs. PX4 kindly sets up a
launch configuration for VS Code. See Figure 3. Debugger
connection on a Windows machine running Windows Sub-
system for Linux uses usbipd for bridging USB to WSL.
The vendor-product identifier 0483:374e corresponds to
the evaluation board’s ST-Link in the ‘attach’ command
snippet below.

usbipd wsl attach -i 0483:374e -d Ubuntu

3. Conclusions

The PX4 firmware configures itself using a deeply-nested
chain of symbolically-linked CMake, Make sub-projects
and shell scripts which manifest at the compiler stages
as a complicated graph of interdependent pre-processor
manifest constants that enable or disable component-level
features. It works by building a set of NuttX operating-
system static libraries and then linking them against the

Figure 3: VS Code debugger

board-level compiled objects. This approach works well
when no compile-time issues exist but is difficult to debug
when errors arise—as inevitably they do when porting to
new platforms.

It takes some time and effort to navigate PX4. It com-
prises a number of sophisticated interconnected layers: the
NuttX operating system, µHAL, board support layer, PX4
drivers, modules, and applications. This is to be expected
for such a feature-rich and capable body of software. Start-
ing a project from a clean working slate allows for an un-
cluttered approach.

3

https://github.com/dorssel/usbipd-win

	Discovery
	ARM Toolchain Series
	Board Support Package (BSP)
	Version Tag
	Board Header
	Board-Level Drivers
	Serial Ports
	Firmware Prototype
	General Tricks

	Results
	Conclusions

