
Endian Madness

Roy Ratcliffe1,∗

Abstract

Introduces definite-clause grammars (DCG predicates) for dealing with endian-oriented octet difference lists.

Introducing definite-clause grammars for dealing with
endian-oriented octet list slices:

• endian//3
• big_endian//2
• little_endian//2

These grammar predicates unify octet 𝐶𝑜𝑑𝑒𝑠|𝐶𝑜𝑑𝑒 ∈
ℤ, 0 … 255 with arbitrarily sized integer 𝑉 𝑎𝑙𝑢𝑒 terms or
vice versa. See Figure 1.

Figure 1: Predicate endian//3 manual entry screenshot

1. Two-Phase Approach

The implementation of the grammar divides the prob-
lem in two: firstly the ‘endianness’ span which unifies an
input or output phrase with the bit width of a value, and
secondly the shifted bitwise-OR phase that translates be-
tween coded eight-bit octets and un-encoded integers of
unlimited bit width by accumulation.

1.1. Pure Endianness
First, unite ‘difference lists’ of octet codes with zero or

more items by a width.

endianness(Width, Octets) -->
{ var(Width), !
},
remainder(Octets),

∗Corresponding author
Email address: roy@ratcliffe.me (Roy Ratcliffe)

1See more hackery at GitHub.

{ length(Octets, Len),
Width is Len << 3

}.
endianness(Width, Octets) -->

{ Width_ is Width /\ 2'111,
Width_ == 0,
Len is Width >> 3,
length(Octets, Len)

},
Octets.

Multiple predicate argument modes exist. The 𝑊𝑖𝑑𝑡ℎ
term can be either a variable or an integer. For unknown
widths, the clauses span the remainder of the difference
lists. The length of the outstanding list of codes deter-
mines the final width multiplied by eight.

The 𝑂𝑐𝑡𝑒𝑡𝑠 may also have variable i.e. unbound items.
The grammar does not examine the codes themselves; it
only concerns the length and its relationship to width. The
grammar fails if the width is not a multiple of eight.

1.2. Bitwise Shifting
Unifying some prescribed list of octets with its equiva-

lent integer sum requires bit shifting and bitwise-OR op-
erations over an accumulator. There is a catch, however.
Merging an 8-bit byte from the list depends on two things:
the appropriate order because big versus little determines
the order, and the mode of the arguments because accu-
mulating from a ‘ground’ value to a ‘variable’ list differs
by computation from its reverse.

The two big-endian predicates follow, 𝑒𝑛𝑑𝑖𝑎𝑛𝑏𝑖𝑔(++, −)
and 𝑒𝑛𝑑𝑖𝑎𝑛′

𝑏𝑖𝑔(−, +) in predicate mode notation. The dou-
ble plus indicates that the none-prime (++, −) predicate
requires a fully bound list of integers where for any octet
code ∀𝑥 • 0 ≤ 𝑥 ∈ ℤ ≤ 255.

big_endian([], Value, Value).
big_endian([H|T], Value0, Value) :-

0 =< H,
H =< 255,
Value_ is H \/ (Value0 << 8),

“By hacking code for itself, don’t you see. Deriving pleasure from the gift of pure coding.”—Wise Martian August 29, 2023

https://en.wikipedia.org/wiki/Difference_list
https://github.com/royratcliffe


big_endian(T, Value_, Value).

big_endian_([], Value, Value).
big_endian_([H|T], Value0, Value) :-

big_endian_(T, Value0, Value_),
H is Value_ /\ 16'ff,
Value is Value_ >> 8.

Notice that in (−, +) mode the accumulator recurses first
and then the residual 𝑉 𝑎𝑙𝑢𝑒′ merges with the accumulated
𝑉 𝑎𝑙𝑢𝑒 because the first octet code is the most-significant
byte of the value for big-endian integer representations,
rather than the least-significant. The 0 ≤ 𝐻 ≤ 255 guard
conditions ensure failure for non-octet code items in the
list.

Little-endian accumulators perform the same logical uni-
fication in reverse. The only difference between big and lit-
tle: recurse first or recurse last. Apart from that subtle but
essential difference, the inner computation behaves identi-
cally. Indeed, the inner shift and bitwise-OR deserve some
refactor work to share the underlying behaviour. They
could factor out as 𝑎𝑐𝑐(+, +, −) and 𝑎𝑐𝑐′(−, +, +) predi-
cates2.

little_endian([], Value, Value).
little_endian([H|T], Value0, Value) :-

little_endian(T, Value0, Value_),
0 =< H,
H =< 255,
Value is H \/ (Value_ << 8).

little_endian_([], Value, Value).
little_endian_([H|T], Value0, Value) :-

H is Value0 /\ 16'ff,
Value_ is Value0 >> 8,
little_endian_(T, Value_, Value).

Put this all together with high-level grammar endian//3.
It applies 𝑏𝑖𝑔 or 𝑙𝑖𝑡𝑡𝑙𝑒-endian ordering grammar to an in-
teger 𝑉 𝑎𝑙𝑢𝑒 of any 𝑊𝑖𝑑𝑡ℎ.

endian(big, Width, Value) -->
big_endian(Width, Value).

endian(little, Width, Value) -->
little_endian(Width, Value).

big_endian(Width, Value) -->
{ var(Value), !
},
endianness(Width, Octets),
{ big_endian(Octets, 0, Value)
}.

big_endian(Width, Value) -->

2This happens in the final refactor.

endianness(Width, Octets),
{ big_endian_(Octets, Value, _)
}.

little_endian(Width, Value) -->
{ var(Value), !
},
endianness(Width, Octets),
{ little_endian(Octets, 0, Value)
}.

little_endian(Width, Value) -->
endianness(Width, Octets),
{ little_endian_(Octets, Value, _)
}.

2. Results

How does it work? This far, it all seems a little bit
academic. Who cares about finding integers of different
widths and endianness in arbitrary lists of octets?

Suppose you have a frame of octets. Starting as simply
as possible, take [1, 2, 3, 4]. Say you want to extract two
16-bit integers, the first has big-endian order, the second
little-endian. The first value extracted should be evaluated
as 𝐴 = 1 × 28 + 2 = 258 and the second 𝐵 = 4 × 28 + 3 =
1024 + 3 = 1027. Applying the endian//3 grammar to
this same trivial exemplar gives us the correct result.

?- phrase((endian(big, 16, A),
endian(little, 16, B)), [1, 2, 3, 4]).

A = 258,
B = 1027.

Of course, this works in reverse as a generator of octets.

?- phrase((endian(big, 16, 258),
endian(little, 16, 1027)), A).

A = [1, 2, 3, 4].

Correct again. Naturally, the bit width of 16 appears
here just to demonstrate but can be any multiple of eight.
String together multiple endian//3 elements to extract,
and simultaneously inject by two-way inference, any inte-
ger values from any sequences of octets.

3. Usefulness

Why would these grammars be useful? They might find
useful applications in a protocol stack, for example. Data-
grams would need encoding and decoding. Typically such
frames encode multiple fixed-length fields of prescribed en-
dian order. Communication layers often work at packing
and unpacking between values and frames. Not limited to

2

https://github.com/royratcliffe/canny_tudor/blob/main/prolog/dcg/endian.pl


integers, floats of different sizes also transcode in alterna-
tive endian orders. Integers capture bits and a floating-
point grammar might re-use the endian grammar as an in-
termediate form for standard ‘float’ codings such as IEEE-
754.

In Prolog, integers have arbitrary width without limit,
even up to the maximum size of the available memory.
These grammars quietly discard any overflow and fill up
any underflow with zeros as an application might expect.
Higher levels in the protocol stack can thereby concern it-
self with the content of the bits rather than their coded
widths and orders. The concerns for endianness do not
propagate upwards where such details interfere and multi-
ply any existing complexities—separation of concerns.

3

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754

	Two-Phase Approach
	Pure Endianness
	Bitwise Shifting

	Results
	Usefulness

