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I recently encountered an amusing “elf” optimisation puzzle called the Clumsy Crucible. “Elves” want to
cross a 13-by-13 square of city blocks starting at junction (1, 1) and ending at junction (13, 13). The little
elves push a large wheeled crucible across the city blocks. The goal is to optimise the heat loss. The sum of
the costs must be minimal. The elves make their merry way from (1, 1) to (13, 13) across the heat-loss grid
shown below.
2413432311323
3215453535623
3255245654254
3446585845452
4546657867536
1438598798454
4457876987766
3637877979653
4654967986887
4564679986453
1224686865563
2546548887735
4322674655533

The elf puzzle is a classic A∗ optimisation problem. The possible routes form a graph of nodes. Arcs between
nodes have a cost metric. Higher values represent a higher cost of traversing between nodes. The A∗ optimiser
walks the graph looking for the path with the lowest total cost.

Deriving a solution requires the solving of multiple sub-problems. The following sections take them individually,
starting with the grid parser and ending with heuristic tuning. I include a suite of tests, one for each stage
for a test-driven approach using Programming Logic.

The solution requires the solving of multiple sub-problems. The following sections take them individually,
starting with the grid parser and ending with heuristic tuning. I include a suite of tests, one for each stage
for a test-driven approach using Programming Logic.

“Easy” one-liner
Relatively easy, that is. Reading the heat loss grid is the first problem. Prolog is quite clever at parsing in
general. It’s almost a one-liner. See the grammar below. “Cost” refers to heat loss, a more generic term.
:- use_module(library(dcg/high_order), [sequence//2, sequence//5]).
:- use_module(library(dcg/basics), [blank//0, blanks//0]).

cost(Cost) --> [Code], { code_type(Code, digit(Cost)), ! }.
cost(-) --> "-".

cost_grid(CostGrid) -->
sequence([], sequence(cost), (blank, blanks), [], CostGrid).
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:- begin_tests(cost_grid).
test(it, CostGrid == [[]]) :- phrase(cost_grid(CostGrid), ``).
test(it, CostGrid == [[1, 2, 3], []]) :- phrase(cost_grid(CostGrid), `123\n`).
test(it, CostGrid == [[1, -, 3]]) :- phrase(cost_grid(CostGrid), `1-3`).
:- end_tests(cost_grid).

The grid grammar makes use of the Prolog sequence//5 high-order DCG predicate where

1. the first argument defines how the sequence starts, its grammar;
2. the second argument defines the grammar of the elements;
3. the third argument defines the separator grammar;
4. the fourth argument defines the sequence ending grammar.

Grammar blank//0 matches a space or newline; blanks//0 matches zero or more of them.

Predicate cost//1 describes the grammar of one cost digit: one code, one digit. The cost is the value of the
digit. It allows for atom - as the cost meaning “not allowed” rather than zero cost. Tests can use this cost to
mark up no-go areas within a cost grid. The cost_grid//1 grammar defines a sequence of cost sequences, a
two-dimensional list of lists of single-digit costs, or no-gos.

Note from the tests that the sequence grammar generates a final [] empty list for the last row of costs.
This does not matter, though it is tempting to clean it up. Nevertheless, for the sake of simplicity, the grid
grammar does not validate the resulting list of lists of numbers. Sub-lists correspond to lines. The list can
have any length and the sub-lists too. The simple parser merely adds an extra empty row of numbers for the
last blank line. We can consider this flexibility an advantage, however. Grids do not require a full population
of costs; they can contain blank lines. In general, software development benefits when validation occurs on
data acceptance fails and optimisation occurs on performance overruns. In short, fix it when it’s broken not
before.

Next, access the grid by row and column.

Cost of heat loss
Look up the xth cost within the yth grid row given a grid of costs and an X-Y term. See the implementation
below with a simple test.
cost_grid_from_file(CostGrid, File) :-

phrase_from_file(cost_grid(CostGrid), File).

cost_grid_from_clumsy_crucible_txt(CostGrid) :-
cost_grid_from_file(CostGrid, 'clumsy_crucible.txt').

cost_at(CostGrid, X-Y, Cost) :-
nth1(Y, CostGrid, Costs),
nth1(X, Costs, Cost),
Cost \== (-).

:- begin_tests(cost_at).
test(it, Costs == [2, 3]) :-

cost_grid_from_clumsy_crucible_txt(CostGrid),
convlist(cost_at(CostGrid), [0-0, 1-1, 13-13], Costs).

:- end_tests(cost_at).

The cost_at/3 predicate does not always succeed, i.e. semideterministic; it fails if the grid does not define a
cost at x and y or if the grid does not exist at (x, y). Hence, failure is the default non-solution. Also, notice
that the coordinates have one-based values; nth1/3 selects the nth item of a list starting at 1; e.g. 1-13
selects the first item of the thirteen row.
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Next, how can the elves go?

Go elves!
The crucible-pushing elves go up, down, left or right. “Right” adds 1 to the x ordinate. “Down” adds 1 to
y and so on. See the go/3 below. Atoms >, v, < and ˆ define the four cardinal directions. The predicate
defines how the direction atoms relate to (x, y). The elves cannot traverse the city grid diagonally. Buildings
stand in the way. The implementation utilises succ/2 for computing and matching successive integers where
succ(N0, N) unifies N = N0 + 1, ∀N ∈ Z.
go(X0-Y, >, X-Y) :- succ(X0, X).
go(X-Y0, v, X-Y) :- succ(Y0, Y).
go(X0-Y, <, X-Y) :- succ(X, X0).
go(X-Y0, ˆ, X-Y) :- succ(Y, Y0).

:- begin_tests(go).
test(it, all(A-B == [(>)-(2-1),v-(1-2),(<)-(0-1),(ˆ)-(1-0)])) :- go(1-1, A, B).
:- end_tests(go).

direction(go(From, To), Direction) :- go(From, Direction, To).

:- begin_tests(direction).
test(it, [A == v, nondet]) :- go(1-1, A, 1-2).
:- end_tests(direction).

Next, the elves A∗-traverse the cost grid.

A-star traversal
This is how it works in a nutshell: start with an initial node and some arbitrary score typically zero. Expand
the lowest-scoring node. Replace it with expanded nodes. Rinse repeat until one of the expanded nodes
matches the final node. Taking the lowest score prefers finding the least-cost route.

Given a priority heap, the implementation of A∗ becomes simple. See the listing below. You create an
initial A∗ heap given a starting score and node, see a_star_initial/3. The node is any term used to
identify a location in a graph. You ask for a “final” node by removing the one with the lowest score, see
a_star_final/4. The lowest-scoring node sits at the root of the heap. Accessing and removing, if necessary,
the lower-scoring node executes very quickly.
:- use_module(library(heaps), [singleton_heap/3, get_from_heap/4]).

%! a_star(+Score0, +Node0, :Goal, -Score, -Node) is nondet.
%
% Non-deterministically expands an A-star heap until empty using the
% given non-deterministic Goal to find all expanded nodes.

a_star(Score0, Node0, Goal, Score, Node) :-
a_star_initial(Score0, Node0, Heap),
a_star_(Heap, Goal, Score, Node, _).

a_star_(Heap0, _Goal, Score, Node, _Heap) :-
a_star_final(Heap0, Score, Node, _).

a_star_(Heap0, Goal, Score, Node, Heap) :-
a_star_expand(Heap0, Goal, Heap1),
heap_size(Heap1, Size1),
( Size1 == 0
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-> true
; a_star_(Heap1, Goal, Score, Node, Heap)
).

a_star_initial(Score, Node, Heap) :-
singleton_heap(Heap, Score, Node).

a_star_final(Heap0, Score, Node, Heap) :-
get_from_heap(Heap0, Score, Node, Heap).

a_star_expand(Heap0, Goal, Heap) :-
a_star_expand(Heap0, Goal, Nodes, Heap1),
heaps:list_to_heap(Nodes, Heap1, Heap).

a_star_expand(Heap0, Goal, Nodes, Heap) :-
get_from_heap(Heap0, Score0, Node0, Heap),
findall(Score-Node, call(Goal, Score0, Node0, Score, Node), Nodes).

Heap expansion appears in two steps. The two-step a_star_expansion/{3,4} predicates use the expansion
Goal to find all the expanded nodes based on a given Node. The result is a list of Score − Node pairs.
Expansion occurs if the “final” heap does not match the final node requirements, i.e. not the node we were
searching for. Nothing stops A∗ from continuing a search to find alternative routes.

Elven wisdom
The elves are wise. They have to be. They do not want to flail around, going around helplessly in circles.
They apply the following rules to their movements.

1. They never return to the same place. That’s just sensible.
2. They never go upwards more than once. That would take them too far from the bottom row, wasting

time and heat more importantly.
3. They never go leftwards more than once. That would wastefully take them too far from the righthand

column where they desire to be.
4. They never go three blocks in the same direction because the crucible gets too hot and they have no

mittens.

In logic, these rules translate as follows.
elven_star(Initial, Final, CostGrid, Score, Where) :-

a_star(0, elven(Initial, CostGrid, []),
elven_expansion,
Score, elven(Final, _, Where0)),

reverse(Where0, Where).

elven_expansion(Score0, elven(From, CostGrid, Where),
Score, elven(To, CostGrid, [go(From, Direction, To)|Where])) :-

go(From, Direction, To),
\+ memberchk(go(_, _, To), Where),
elven_direction(<, Direction, Where),
elven_direction(ˆ, Direction, Where),
\+ elven_thrice_in_same_direction(Where, Direction),
cost_at(CostGrid, To, Cost),
Score is Score0 + Cost.

elven_direction(Direction, Direction, Where) :-
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!,
( memberchk(go(_, Direction, _), Where)
-> fail
; true
).

elven_direction(_, _, _).

elven_thrice_in_same_direction(Where, Direction) :-
maplist(arg(2), Where, [Direction, Direction, Direction|_]).

Some points to note:

• The elven nodes are elven(X-Y, CostGrid, Where) terms.

• The Where argument is a list of go(From, Direction, To) terms that grow at the list head for every
successful expansion.

• The elven_star/5 predicate reverses the Where list so that its go/3 terms start at the beginning
rather than at the end.

Optimum loss of heat
Run and time the elven quest as follows.
?- time((cost_grid_from_clumsy_crucible_txt(CostGrid), elven_star(1-1, 13-13, CostGrid, Score, Where))).
% 313,918,202 inferences, 142.328 CPU in 185.423 seconds (77% CPU, 2205595 Lips)
Score = 102

The elven_star predicate solves non-deterministically. It delivers the best solution first but thereafter
continues searching for other solutions if the user backtracks by pressing semicolon (;) to redo the predicate.
Indeed, it continues non-deterministically until the A∗ heap drains to nothing, producing successively worse
but plausible solutions along the way.
2>>>43ˆ>>>323
321v>>>53v623
325524565v>54
3446585845v52
4546657867v>6
14385987984v4
44578769877v6
36378779796v>
465496798688v
456467998645v
12246868655<v
25465488877v5
43226746555v>

Heat loss of 102 in about three minutes. Clever elves.

Post-mortem
A∗ has its limitations. It is not a magic bullet. The priority heap quickly grows. Unless the host machine has
unlimited amounts of memory, the solution will inevitably hit out-of-memory unless node expansion applies
constraints. Expansion requires some amount of leeway but within reasonable bounds.

Tweaking the expansion heuristics does the trick. Choose the function wisely. It determines the complexity of
the search optimisation. Without some form of smart heuristic, complexity quickly multiplies. The expansion
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function must smuggle in just enough knowledge to permit a wise balance between freedom to find a solution
and sensible smarts to avoid exploding the available computing resources.

For the elves, the expansion must allow for some measure of counter-intuitive backtracking away from the
goal. Upwards, but only once. Leftwards, but only once.

The solution runs in a single thread. This is necessary since each node expansion requires access to a common
search tree. But it does add performance limitations.

“Not all those who wander are lost.”—J.R.R. Tolkien
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