
Proportional, Integral, Derivative

Roy Ratcliffe1,∗

Abstract

This article presents an in-depth exploration of the classic PID (Proportional-Integral-Derivative) control mechanism
and its implementation using C++ as the core language with R as the testing engine. The PID control function is
mathematically defined in terms of control-measurement error and is widely utilized in real-world industrial analysis
and control applications.

The article delves into the C++ implementation of the PID controller, providing a detailed analysis of the core
computation. Furthermore, it discusses the incorporation of precision matching for scalar and factor types, offering
insights into the efficiency and precision considerations in the implementation.

Overall, this article serves as a comprehensive guide to understanding the PID control mechanism and its practical
application in the C++ programming language, along with its integration with R for testing purposes.

Keywords: C++, R, PID

PID is a classic control mechanism. It controls an output based on periodic measurements using the error term, its
integral and its derivative. The technique is a common, even ubiquitous, method for real-world industrial analysis
and control.

Mathematically, the control function 𝑢(𝑡) in terms of control-measurement error 𝜖 amounts to:

𝑢(𝑡) = 𝐾𝑝𝜖(𝑡) + 𝐾𝑖 ∫ 𝜖(𝜏)𝑑𝜏 + 𝐾𝑑
𝑑𝜖(𝑡)
𝑑𝑡

This article applies C++ as the core PID implementation with use of R as the testing engine.

1. C++ Implementation

See the core computation in the listing below.

const scalar_type p = control_ - measure_;
const scalar_type i = i_ + p;
const scalar_type d = p - p_;
out_ = kp_ * p + ki_ * i + kd_ * d;
p_ = p;
i_ = i;

The implementation uses trailing underscore to mark PID class members. This helps to differentiate member
variable access from stack or register variable access. The computation benefits from this notation as well; the

∗Corresponding author
Email address: roy@ratcliffe.me (Roy Ratcliffe)

1See more at GitHub.

Preprint submitted to Technical Notes, Roy’s Code Chronicles September 4, 2024

https://github.com/royratcliffe

trailing underscore matches the prime in (𝑝′, 𝑖′, 𝑑′) whose values persist in volatile memory between computation
cycles. The output calculation derives from the current monotonic cycle’s proportion, integral and derivative. The
order of declarations reflects an input-compute-output approach. The compiler may decide to rearrange the order
for optimisation purposes.

The const declarations are computationally redundant but semantically useful. The initial statements load the
core’s register set with the new monotonic cycle’s (𝑝, 𝑖, 𝑑) triplet. The latest output value derives from these. The
fourth statement relies on operator precedence; multiplication precedes addition. Finally, the cycle persists (𝑝′, 𝑖′)
for the next monotonic cycle.

The PID derivative term deserves some comment. The output does not divide by time despite its delta time de-
nominator. The denominator factors in the integral factor. Divide the factor by delta time. This obviates a divide
operation, an expensive machine operation in cycle times. The integral factor pre-divides by 𝑑𝑡 .

1.1. Full Class
The full pid::controller class listing appears below.

1 /*!
2 * \file pid_controller.h
3 * \copyright (c) 2024, Roy Ratcliffe, Northumberland, United Kingdom
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,

10 * distribute, sublicense, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be
15 * included in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
21 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25

26 #pragma once
27

28 #ifdef __cplusplus
29 namespace pid {
30 template <typename T, typename U = T> class controller {
31 public:
32 typedef T scalar_type;
33 typedef U factor_type;
34

35 controller(factor_type kp, factor_type ki, factor_type kd)
36 : kp_(kp), ki_(ki), kd_(kd),

2

37 // proportional, integral and derivative terms
38 p_(0), i_(0), d_(0),
39 // control point, measure point, output of PID controller
40 control_(0), measure_(0), out_(0) {}
41

42 void set_measure(scalar_type measure) { measure_ = measure; }
43 scalar_type measure() const { return measure_; }
44

45 void set_control(scalar_type control) { control_ = control; }
46 scalar_type control() const { return control_; }
47

48 //! \brief Resets the controller.
49 //! \details Resetting the PID controller restarts the proportional error as
50 //! the difference between the new control and the existing measure. The
51 //! integral and derivative reset to zero. Always reset after setting a new
52 //! control.
53 void reset() {
54 p_ = control_ - measure_;
55 i_ = 0;
56 d_ = 0;
57 }
58

59 void monotonic() {
60 const scalar_type p = control_ - measure_;
61 const scalar_type i = i_ + p;
62 const scalar_type d = p - p_;
63 out_ = kp_ * p + ki_ * i + kd_ * d;
64 p_ = p;
65 i_ = i;
66 d_ = d;
67 }
68

69 scalar_type out() const { return out_; }
70

71 // general accessors
72

73 void set_proportional_factor(factor_type kp) { kp_ = kp; }
74 factor_type proportional_factor() const { return kp_; }
75 scalar_type proportional() const { return p_; }
76

77 void set_integral_factor(factor_type ki) { ki_ = ki; }
78 factor_type integral_factor() const { return ki_; }
79 scalar_type integral() const { return i_; }
80

81 void set_derivative_factor(factor_type kd) { kd_ = kd; }
82 factor_type derivative_factor() const { return kd_; }
83 scalar_type derivative() const { return d_; }
84

85 private:
86 factor_type kp_, ki_, kd_;
87 scalar_type p_, i_, d_;

3

88 scalar_type control_, measure_, out_;
89 };
90 } // namespace pid
91 #endif
92

93 /*!
94 * \brief Abstracted proportion-integral-derivative triple.
95 */
96 struct pid_float {
97 float p_, i_, d_;
98 };
99

100 struct pid_float_controller {
101 const struct pid_float *k_;
102 struct pid_float accumulator_;
103 float control_, measure_, out_;
104 };
105

106 /*!
107 * \brief Applies Proportion, Integral and Derivative monotonically.
108 * \details First, set up the control point. Feed in the measurement samples
109 * while applying the monotonic method until the output matches the control. The
110 * name implies that the control hardware runs it periodically at a real-time
111 * fixed rate---neither faster nor slower. The application is real-time.
112 */
113 static inline void pid_float_controller_monotonic(struct pid_float_controller *pid_float_controller) {
114 const float p = pid_float_controller->control_ - pid_float_controller->measure_;
115 const float i = pid_float_controller->accumulator_.i_ + p;
116 const float d = p - pid_float_controller->accumulator_.p_;
117 pid_float_controller->out_ = pid_float_controller->k_->p_ * p + pid_float_controller->k_->i_ * i + pid_float_controller->k_->d_ * d;
118 pid_float_controller->accumulator_.p_ = p;
119 pid_float_controller->accumulator_.i_ = i;
120 pid_float_controller->accumulator_.d_ = d;
121 }

The C++ code defines two types: one for the scalars and another for the factors. This allows for higher precision
when computing the output. For example, assuming that the platform supports both 32- and 64-bit floating-point
numbers, the application may choose to apply double precision for the computation, but cast to single-precision
floats for the persistent scalar terms. Many embedded platforms will support only 32-bit single-precision floating-
point arithmetic. The C++ implementation therefore defaults to factor precision matching scalar precision.

The full implementation additionally persists the derivative term in volatile memory. This is not strictly necessary.
The derivative becomes redundant once applied to the output. Its value may prove useful for diagnostics.

2. C++ with R Wrapper

Import the wrapper class for R as follows. R has a canny ability to dynamically compile and run chunks of C++. It
works well.

1 #include <Rcpp.h>
2

3 using namespace Rcpp;

4

4

5 #include "pid_controller.h"
6

7 typedef pid::controller<double> PIDController;
8

9 RCPP_MODULE(mod_pid) {
10 class_<PIDController>("PIDController")
11 .constructor<PIDController::scalar_type, PIDController::scalar_type, PIDController::scalar_type>()
12 .property("measure", &PIDController::measure, &PIDController::set_measure)
13 .property("control", &PIDController::control, &PIDController::set_control)
14 .method("reset", &PIDController::reset)
15 .method("monotonic", &PIDController::monotonic)
16 .property("out", &PIDController::out)
17 .property("proportional", &PIDController::proportional)
18 .property("integral", &PIDController::integral)
19 .property("derivative", &PIDController::derivative);
20 }

Sourcing the C++ compiles the code, building and loading a library. The Rcpp library synthesises an S4 class.

require(Rcpp)

Loading required package: Rcpp

Compile and link the C++ code.
Rcpp::sourceCpp("pid_controller.cpp")

Show the class wrapper.
PIDController

C++ class 'PIDController' <00000150263ffb40>
Constructors:

PIDController(double, double, double)

Fields:
double control
double derivative [readonly]
double integral [readonly]
double measure
double out [readonly]
double proportional [readonly]

Methods:
void monotonic()

void reset()

Create a new PID controller instance.
Examine its type and structure.
pid <- new(PIDController, 0.1, 0.01, 0.01)
typeof(pid)

5

[1] "S4"

str(pid)

Reference class 'Rcpp_PIDController' [package ".GlobalEnv"] with 6 fields
$ control : num 0
$ derivative : num 0
$ integral : num 0
$ measure : num 0
$ out : num 0
$ proportional: num 0
and 18 methods, of which 4 are possibly relevant:
finalize, initialize, monotonic, reset

3. Testing

How does it work? First set up the control point. Feed in the measurement samples while applying the monotonic
method until the output matches the control. The name implies that the control hardware runs it periodically at a
real-time fixed rate. No faster, no slower. The application is real-time.

What does the simulation need for testing purposes? Effectively, the PID controller is a generator function.

3.1. PID Properties
You can access the names of the PID controller fields using the following expression. It uses R’s “currying” pipe

operator |> for nested function-calling clarity.

PIDController$fields() |>
names()

[1] "control" "derivative" "integral" "measure" "out"
[6] "proportional"

The following expression answers a named numerical vector for a given PID controller. It extracts all the PID
controller fields using the property accessors.

pid$control <- 10
PIDController$fields() |>
names() |>
vapply(\(x, y) y[[x]], numeric(1L), y = pid)

control derivative integral measure out proportional
10 0 0 0 0 0

3.2. PID Generator for Simulation
The listing below defines a pid_gen function that wraps a PID controller within a co-routine generator.

Using R's co-routines.
require(coro)

Loading required package: coro

#' Compiles a PID co-routine.
#' @param hysteresis Optional hysteresis function.
#' Its result becomes the next PID measurement.
pid_gen <- \(control, measure,

6

kp = 0.1, ki = 0.01, kd = 0.05,
hysteresis = \(pid) pid$measure + pid$out)

coro::gen({
pid <- new(PIDController, kp, ki, kd)
pid$control <- control
pid$measure <- measure
pid$reset()
repeat {
PIDController$fields() |>
names() |>
vapply(\(x, y) y[[x]], numeric(1L), y = pid) |>
coro::yield()

pid$monotonic()
pid$measure <- do.call(hysteresis, list(pid))

}
})

#' Bind generated rows.
#' Useful convenience function. Collects then applies data frame row binding.
rbind_gen <- \(...)
coro::collect(...) |>
do.call(what = rbind)

The default hysteresis function simply adds the output to the current measure for the next monotonic cycle. This
is a gross simplification. In real life, in practice, the lag between output and measurable effect carries additional
hysteresis.

3.3. Measure and Output
Use the generator simulation to plot measurements side-by-side with PID controller output.

library(ggplot2)

df <- pid_gen(100, 50, ki = 0.01, kd = 0.01) |>
rbind_gen(n = 100L)

df <- cbind(df, t = 1:nrow(df) - 1L)

ggplot(df, aes(x = t)) +
geom_line(aes(y = measure), linetype = "dotted") +
geom_line(aes(y = out, colour = out))

7

0

30

60

90

120

0 25 50 75 100
t

m
ea

su
re

out

0

1

2

3

4

5

3.4. Proportion, Integral, Derivative
Plot the (𝑝′, 𝑖′, 𝑑′) terms retained by the PID controller in-between computation cycles.

library(patchwork)

(ggplot(df, aes(t, proportional)) + geom_line()) +
(ggplot(df, aes(t, integral)) + geom_line()) +
(ggplot(df, aes(t, derivative)) + geom_line())

0

20

40

0 25 50 75 100
t

pr
op

or
tio

na
l

0

100

200

0 25 50 75 100
t

in
te

gr
al

−4

−2

0

0 25 50 75 100
t

de
riv

at
iv

e

8

4. Conclusions

Importantly, the PID output operation runs monotonically. Control and measure events may trigger asyn-
chronously and outside the same monotonic process. This is important because the measurements may have a
sampling rate that differs from the output’s control rate. CAN-based signals have such limitations. PID control
operates statefully; its output at time 𝑡 depends on not only the control and measurement signals but also the
previously latched measurements—hysteresis.

The output is not the measurement. Its dimensions are the same but the interpretation may not directly add to
the next measurement. Interpret the output as a sign and magnitude applied to the output mechanism to move the
next measurement towards the control goal. For example, the actual output could be valves that energise and move
the measurement indirectly. The sign tells the control logic which valves to open. The magnitude informs the logic
of how much energy to apply.

The integral term continuously accumulates. Depending on the application, this may not prove to be ultimately
desirable, although it tends to zero by definition.

9

	C++ Implementation
	Full Class

	C++ with R Wrapper
	Testing
	PID Properties
	PID Generator for Simulation
	Measure and Output
	Proportion, Integral, Derivative

	Conclusions

