
Epsilon Equal

Roy Ratcliffe1,∗

Abstract

The concept of equality for floating-point numbers in the C language is not straightforward due to the limitations
of floating-point arithmetic precision. This paper explores the intricacies of determining equality between floating-
point numbers and discusses the implications of these differences, particularly in scenarios involving real-world
computations. The use of a pure logic solution is presented, along with its implementation and considerations.
Additionally, the paper introduces a C99 solution optimized for embedded systems, offering a practical approach
to address the challenges of comparing floating-point numbers. The paper concludes by advocating for the use of
𝜖-equality, a method that leverages factors of the smallest possible difference to determine equality, and highlights
its relevance in the context of embedded systems with a floating-point unit.

Keywords:
C

In C, when are two floating-point numbers equal? The answer is not exactly simple. It depends on what equal
means. One might assume naively that x == y if answers true the number at x and ymatch, but since floating-point
arithmetic attempts to model real numbers within a limited level of precision.

Most of the time, the distinction is not significant. In the real world, the difference sometimes doesmatter, however,
e.g. where values derive from computations. C compilers may even issue a warning message when comparing floats.

Rcpp::evalCpp("0.0 == 0.0")

[1] TRUE

Rcpp::evalCpp("0.0 == DBL_EPSILON")

[1] FALSE

This result demonstrates that two quantities need only differ by a minuscule amount for inequality when under
direct comparison. The standard Cmath library defines DBL_EPSILON as the smallest possible floating-point positive
number.

1. Solution in Pure logic

In logic, the solution appears below.

%! epsilon_equal(+X:number, +Y:number) is semidet.
%! epsilon_equal(+Epsilons:number, +X:number, +Y:number) is semidet.
%
% Succeeds only when the absolute difference between the two given

∗Corresponding author
Email address: roy@ratcliffe.me (Roy Ratcliffe)

1See more at GitHub.

Preprint submitted to Technical Notes, Roy’s Code Chronicles August 31, 2024

https://github.com/royratcliffe

% numbers X and Y is less than or equal to epsilon, or some factor
% (Epsilons) of epsilon according to rounding limitations.

epsilon_equal(X, Y) :- epsilon_equal(1, X, Y).

epsilon_equal(Epsilons, X, Y) :- Epsilons * epsilon >= abs(X - Y).

2. In C99

The C99 solution works better for embedded systems where fancy backtracking logic is not readily available.
#pragma once

/*
* float.h for DBL_EPSILON and friends
* math.h for fabs(3) and friends
*/

#include <float.h>
#include <math.h>

/*!
* \brief Epsilon equality for double-precision floating-point numbers.
* \details Succeeds only when the absolute difference between the two given
* numbers X and Y is less than or equal to epsilon, or some factor (epsilons)
* of epsilon according to rounding limitations.
*/

// [[Rcpp::export]]
static inline bool fepsiloneq(unsigned n, double x, double y) {
return n * DBL_EPSILON >= fabs(x - y);

}

/*!
* \brief Epsilon equality for single-precision floating-point numbers.
*/

// [[Rcpp::export]]
static inline bool fepsiloneqf(unsigned n, float x, float y) {
return n * FLT_EPSILON >= fabsf(x - y);

}

The 𝜖-equal family use factors of the smallest possible difference to determine equality. Two function implemen-
tations exist: one for single- and another for double-precision.

The implementation avoids division since that reduces precision. Subtraction computes the differences between
two measurements. The 𝑛 × 𝜖 threshold typically computes out at compile time provided that n is some constant
factor—since the functions appear as static and inline. That makes the computation of equality pretty light on
the floating-point unit.

Now we can apply an 𝜖-precision level when matching real numbers. In the examples below, the second test fails
because 1 × 10−15 exceeds the 𝜖 equality threshold. It would succeed if using fepsiloneqf because single-precision
floating-point 𝜖 is a larger quantity.

fepsiloneq(1, 0.0, 0.0)

[1] TRUE

2

fepsiloneq(1, 0.0, 1e-15)

[1] FALSE

fepsiloneq(1, 0.0, 1e-16)

[1] TRUE

3. Conclusions

For embedded systems, this approach assumes a floating-point unit, else a soft-float library. Embedded FPUs are
not uncommon these days, especially in 32-bit cores.

In effect, 𝜖-equality amounts to

𝑥 − 𝑛𝜖 ≤  𝑦 ≤ 𝑥 + 𝑛𝜖

or 𝑦 between 𝑥 ± 𝑛𝜖 or vice versa. Such comparisons become, effectively, a symmetrical interval intersection test.
Ideal for floating-point number matching.

3

	Solution in Pure logic
	In C99
	Conclusions

