
I2C Device on Linux

Roy Ratcliffe1,∗

Abstract

The integration of the I2C protocol within embedded systems has become a standard practice for facilitating communication
between central processing units and external peripherals. This article explores the implementation of an I2C wrapper library
within SWI-Prolog, leveraging Linux’s capabilities to provide robust access to I2C devices through a user-friendly interface. By
mapping the I2C communicationmodel to Unix file descriptors, the library simplifies operations such as opening devices, querying
functionalities, and executing read/write commands in a Prolog environment. Notably, the absence of a separate close operation
is justified; the library adopts a lazy approach that relies on garbage collection for descriptor management. This methodology
reflects typical usage scenarios in embedded applicationswhere a persistent I2C connection is maintained throughout the service’s
lifecycle. The article outlines the design, functionality, and potential applications of the Prolog pack, providing developers with
an efficient tool for I2C interaction in embedded Linux systems.

Keywords: Embedded, C, Prolog

1. Introduction

I2C is a standard ubiquitous protocol for communication
within embedded systems between a central processing unit
and its external peripherals. Most embedded chip-sets incor-
porate I2C communication hardware and embedded vendors
include driver-level software within their Hardware Abstrac-
tion Layer for efficiently handling low-level transfers over I2C.
The protocol clocks bits over two wires 𝑆𝐷𝐴 and 𝑆𝐶𝐿, serial
data and serial clock respectively. Some embedded systems
refer to the protocol as a “two-wire” interface for this reason.

But what about Linux? Though arguably not an embedded
operating system, it can be found in embedded scenarios with
sufficiently powerful cores equipped with sufficient amounts
of memory. Embeddable distributions of Linux typically pro-
vide kernel drivers that map the two-wire I2C write-read pro-
tocol to standard Unix file descriptor accessors. The devel-
oper opens a “character device” and uses standard writes and
reads to perform transfers. I2C devices appear at /dev/i2c-
followed by a number to identify the controller channel.

In object modelling terms, the “descriptor” model of input-
output for Unix appears below, Figure 1. A “descriptor” acts
as a connector between a user-land program and the kernel.
Linux maps an I2C connection to a Unix descriptor. The input-
output control method allows for arbitrary command requests.
The Linux kernel driver uses this interface to configure the
channel or to perform advanced transfers; user programs con-
figure the I2C slave address using this generalised interface.

∗Corresponding author
Email address: roy@ratcliffe.me (Roy Ratcliffe)

1See more hackery at GitHub.

Figure 1: Unix descriptor “class” model. This is a conceptual depiction. The
open method appears in the model as a static answering a descriptor instance.
The C library answers the underlying file descriptor handle, in practice, and
the instance methods receive the handle as the first argument.

Preprint submitted to Roy’s Code Chronicles November 24, 2024

https://github.com/royratcliffe

It sounds simple. Is it? The following sections develop a sim-
ple wrapper library for SWI-Prolog [1]. Find the completed
sources for the Prolog pack on GitHub and at the SWI-Prolog
add-ons.

2. Prolog Pack

To test out the interface, a “foreign” library for Prolog will
wrap the descriptor model. The pack will provide the follow-
ing I2C predicates.

• i2c_open(+Dev, -I2C) to open a device.
• i2c_funcs(+I2C, ?Funcs) to query functionality.
• i2c_slave(+I2C, +Addr) to configure the slave address.
• i2c_write(+I2C, ++Bytes, ?Actual) to write bytes.
• i2c_read(+I2C, +Expected, ?Bytes) to read bytes.

The predicate descriptions show the argument modes. Note
the double plus when writing 𝐵𝑦𝑡𝑒𝑠, a list of integer terms.
Also note, the read operation has partial ground 𝐵𝑦𝑡𝑒𝑠. Read-
ing performs a complete read using a stack-based buffer and
then unifies the resulting octets with the argument. The read
succeeds when the buffer contents successfully unify with the
argument. In other words, reading can check against some
fully complete or partially complete expectations about the re-
sponse.

Notice that the predicates exclude a close operation.

2.1. No Close
The pack does not provide an i2c_close predicate. Thatmay

seem strange. The developer can open a device but not close
it. It takes a lazy approach instead. The open descriptor only
closes when the garbage collector releases the I2C blob. This
carries with it one disadvantage: holding the descriptor open
longer than necessary.

Typical usage does not require eager closing, however. The
typical embedded scenario keeps its I2C connection open in-
definitely. The connection and its open file descriptor belong
to a service that operates continuously. The open descriptor
only needs to close when the service ends. The garbage col-
lector releases the device blob on program termination. Linux
itself will close the descriptor when its owner process dies.

2.2. Device Blob
In essence, the Prolog pack provides a “blob” for an I2C de-

scriptor. The code extract below lists the C code that defines
the blob and illustrates how it unifies a 𝑇 𝑒𝑟𝑚 variable with a
file descriptor 𝑓 𝑑 integer. In Prolog’s world, the blob exists as
an atom with some invisible, opaque state.

19 PL_blob_t i2c_dev_blob_type =
20 { .magic = PL_BLOB_MAGIC,
21 .name = "i2c_dev",
22 .release = release_i2c_dev,
23 .write = write_i2c_dev,
24 };
25

26 int unify_i2c_dev(term_t Term, int fd)
27 { struct linux_i2c_dev *blob = PL_malloc(sizeof(*blob));
28 (void)memset(blob, 0, sizeof(*blob));

29 blob->fd = fd;
30 return PL_unify_blob(Term, blob, sizeof(*blob), &i2c_dev_blob_type);
31 }

Opening an I2C device becomes a simple process: opening
the device, turning a device number into a path and asking the
kernel to open it for read-write access.

36 foreign_t i2c_open_2(term_t Dev, term_t I2C)
37 { int dev;
38 char pathname[PATH_MAX];
39 int fd;
40 if (!PL_get_integer(Dev, &dev)) PL_fail;
41 Ssnprintf(pathname, sizeof(pathname), "/dev/i2c-%d", dev);
42 if (0 > (fd = open(pathname, O_RDWR))) return i2c_errno("open");
43 return unify_i2c_dev(I2C, fd);
44 }

The final return statement calls the blob unification function
listed previously.

3. Usage

It works well. The following section takes the pack for a
‘drive’ by talking to a PCA9685.

3.1. NXP Semiconductor’s PCA9685
What is the PCA9685? To paraphrase NXP Semiconductor,

“The PCA9685 is a 16-channel LED controller
that operates via I2C-bus, specifically designed
for Red/Green/Blue/Amber (RGBA) colour back-
lighting applications. Each LED output features its
own 12-bit resolution, equating to 4096 brightness
levels, managed by a dedicated PWM (Pulse Width
Modulation) controller. This controller can be pro-
grammed to operate at frequencies ranging from a
typical 24 Hz to 1526 Hz, with the duty cycle ad-
justable between 0% and 100%, allowing for precise
control over brightness levels. Notably, all outputs
maintain the same PWM frequency, ensuring consis-
tency in lighting performance.”

%! led_adr(?OnOff, ?LH, ?Adr0) is nondet.
%
% Adr0 is the PWM control's on-off low-high relative register address
% offset, between 0 and 3 inclusive.

led_adr(on, l, 0x00).
led_adr(on, h, 0x01).
led_adr(off, l, 0x02).
led_adr(off, h, 0x03).

%! reg_adr(?Reg, ?Adr) is nondet.
%
% Maps the entire PCA9685 register file.

reg_adr(mode(Mode), Adr) :-
between(1, 2, Mode),
Adr is 0x00 + Mode - 1.

reg_adr(subadr(SubAdr), Adr) :-
between(1, 3, SubAdr),
Adr is 0x02 + SubAdr - 1.

reg_adr(allcalladr, 0x05).
reg_adr(led(LED, OnOff, LH), Adr) :-

between(0, 15, LED),
led_adr(OnOff, LH, Adr0),
Adr is 0x06 + Adr0 + (0x04 * LED).

reg_adr(led(all, OnOff, LH), Adr) :-
led_adr(OnOff, LH, Adr0),
Adr is 0xfa + Adr0.

2

https://www.swi-prolog.org/
https://www.swi-prolog.org/pldoc/man?section=preddesc
https://www.nxp.com/products/interfaces/ic-spi-i3c-interface-devices/i3c-interface-devices/led-drivers/16-channel-12-bit-pwm-fm-plus-ic-bus-led-driver:PCA9685

reg_adr(pre(scale), 0xfe).
reg_adr(test(mode), 0xff).

3.1.1. Reading the first mode register
This becomes a straightforward clause sequence: open the

device 𝐷𝑒𝑣 = 1 by number, configure the slave address 𝐴𝑑𝑑𝑟 =
4016.

i2c_dev(Dev),
i2c_open(Dev, I2C),
pca9685_addr(Addr),
i2c_slave(I2C, Addr),
ai(I2C),
% Write 00 to the Control Register.
% It determines access to the other registers.
i2c_write(I2C, [0x00]),
i2c_read(I2C, [Byte]).

3.2. Enabling the control register’s auto-increment (AI) feature
The PCA9685 disables the control register’s auto-increment

(AI) function on restart. It needs enabling. Enable AI idempo-
tently by reading the𝑀𝑜𝑑𝑒1 register. If the register has zero in
the fifth bit, perform a write-back with the fifth bit set. Retain
all other bits.
ai(I2C) :-

reg_adr(mode(1), Adr),
rd(I2C, Adr, [Mode1]),
(Mode1 /\ 2'0010_0000 =\= 0x00
-> true
; Mode1_ is Mode1 \/ 2'0010_0000,

wr(I2C, Adr, [Mode1_])
).

Non-AI mode is less useful. Arguably, AI-enabled should be
the default. If the Control Register retains its content, the de-
vice accesses the same register at every read operation.

4. Conclusions

The Linux kernel driver makes I2C easy. The half-duplex
protocol fits neatly beneath the standard Unix file descriptor
access interface: open, ioctl, read, write. It also supports a
more sophisticated interface using message buffers—not cov-
ered here.

The pack presents the simplest connection to an I2C con-
troller. It does not use i2c_msg but instead leaves that step
to future iterations. That would eliminate task switching be-
tween transfer segments, however. User-land would only re-
sume at the end of all transfer segments. The kernel handles
the entire transfer in such a case. The model based on Unix
descriptors gives a simple level of access but not one without
limitations. It adds some latency between reads andwrites. De-
scriptor read-write is not an optimal implementation by any
means but proves adequate for most requirements.

References
[1] J.-C. Rohner, H. Kjellerstrand, Prolog for scientific explanation, in: D. S.

Warren, V. Dahl, T. Eiter, M. V. Hermenegildo, R. Kowalski, F. Rossi (Eds.),
Prolog: The next 50 Years, Springer Nature Switzerland, pp. 372–385.
doi:10.1007/978-3-031-35254-6_30.
URL https://doi.org/10.1007/978-3-031-35254-6_30

3

https://doi.org/10.1007/978-3-031-35254-6_30
https://doi.org/10.1007/978-3-031-35254-6_30
https://doi.org/10.1007/978-3-031-35254-6_30

	Introduction
	Prolog Pack
	No Close
	Device Blob

	Usage
	NXP Semiconductor's PCA9685
	Reading the first mode register

	Enabling the control register's auto-increment (AI) feature

	Conclusions

