
Neat Filesystem Traversal by DCG

Roy Ratcliffe1,∗

Abstract

Explores an innovative approach to filesystem traversal using Definite-Clause Grammars (DCGs) in Prolog. Tra-
ditionally employed for parsing and language processing, the approach repurposes DCGs to navigate directory
structures in a declarative and modular fashion. This method leverages Prolog’s pattern matching and backtracking
strengths to create concise and expressive traversal logic. The approach facilitates clear and maintainable code for
filesystem operations by utilising DCGs, offering advantages over conventional imperative methods.

Keywords: Prolog, DCG

Sometimes it is advantageous to recursively traverse files and sub-files within a directory tree by partial unification
using definite-clause grammars, i.e. difference lists.

It can be helpful to extract file system information in two forms:

i. the sub-file path and also
ii. the components of that path.

This is what’s required: a grammar of the form

𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦_𝑒𝑛𝑡𝑟𝑦(+𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 , −𝐸𝑛𝑡𝑟𝑦)//

which recursively unifies full paths of files at 𝐸𝑛𝑡𝑟𝑦 , where the difference list unifies with the recursive path com-
ponents of each found file.

1. Solution by DCG

In Prolog DCG form, the solution appears below. The first 𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦_𝑒𝑛𝑡𝑟𝑦//2 predicate works on the difference
list. It neatly traverses a file system using a grammar.
%! directory_entry(+Directory, ?Entry)// is nondet.
%
% Neatly traverses a file system using a grammar.

directory_entry(Directory, Entry) -->
{ exists_directory(Directory),
!,
directory_entry(Directory, Entry_),
entries_entry([Directory, Entry_], Directory_)

∗Corresponding author
Email address: roy@ratcliffe.me (Roy Ratcliffe)

1See more hackery at GitHub.

Preprint submitted to Roy’s Code Chronicles May 11, 2025

https://github.com/royratcliffe


},
[Entry_],
directory_entry(Directory_, Entry).

directory_entry(Directory, Entry, [], Entries) :-
entries_entry([Directory|Entries], Entry).

entries_entry(Entries, Entry) :- atomic_list_concat(Entries, /, Entry).

%! directory_entry(+Directory, ?Entry) is nondet.
%
% No need to check if the Entry exists. It does exist at the time of
% directory iteration. That could easily change by deleting, moving or
% renaming the entry.

directory_entry(Directory, Entry) :-
directory_files(Directory, Entries),
member(Entry, Entries),
\+ special(Entry).

special(.).
special(..).

The implementation depends on directory_files/2, which finds a list of 𝐸𝑛𝑡𝑟 𝑖𝑒𝑠 within a given 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 . Atoms
make up the list with their case preserved.

The given solution only finds files and skips the special dot entries. Here, 𝐸𝑛𝑡𝑟𝑦 refers to a file. The grammar
recursively traverses sub-directories beneath the given 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦 and yields every existing file path at 𝐸𝑛𝑡𝑟𝑦 . The
directory acts as the root of the scan; it joins with the entry to yield the full path of the file, but not with the
difference list. The second 𝐿𝑖𝑠𝑡 argument of 𝑝ℎ𝑟𝑎𝑠𝑒/2 unifies with a list of the corresponding sub-path components
without the root. The caller sees the full path and the relative sub-components.

Note that the second clause appears in the DCG expanded form with the two hidden arguments: the pre-parsed
input list 𝑆0 and the post-parsed output list 𝑆. For non-directory entries, the input list unifies with nil [] because
it represents a terminal node in the directory tree, and the post-parsed terms amount to the accumulated 𝐸𝑛𝑡𝑟 𝑖𝑒𝑠
spanning the sub-directory entries in-between the original root directory and the file itself.

1.1. Why is this useful?
Good question. In the Prolog world, this approach allows for selective unification based on relative file path com-

ponents. Take an example.

The following phrase/2 finds all the files in the root directory of drive C.
?- phrase(directory_entry('c:/', A), [B]).
A = 'c://hiberfil.sys',
B = 'hiberfil.sys' ;
A = 'c://pagefile.sys',
B = 'pagefile.sys' ;
A = 'c://swapfile.sys',
B = 'swapfile.sys' ;
false.

In short, this becomes useful for filtering file system traversals nondeterministically. Use variables for indetermi-
nate components of the path and atoms for determined components.

2



As another example, take the following. It finds all files and matches the last 𝐸𝑛𝑡𝑟𝑦 term, i.e. the file’s name within
its parent directory, and matches that atom by file name extension. This takes longer to execute, naturally.
?- phrase(directory_entry('c:/', A), B), last(B, C), file_name_extension(D, ini, C).

The result in 𝐴 and 𝐷 is the full path name of the file and its base name, respectively.

2. Conclusions

The implementation does not require an append/3. The difference list implicitly walks the sub-directory tree and
automatically appends the list with the terminal elements, in the case of the non-directory entries found within each
directory.

Of course, performance is a consideration. The grammar does not automatically descend the entire directory tree.
It descends the tree as far as the difference list requires, but no more. The length of the list prescribes the bounds of
the search and limits the depth.

The solution is a handy shortcut for partial searching by path components by an arbitrary mixture of knowns and
unknowns. One might describe it as a “neat” and somewhat creative use of definite-clause grammars.

3


	Solution by DCG
	Why is this useful?

	Conclusions

