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Abstract

This article presents a brief overview of Skolemised Constraint Answer Set Programming, or s(CASP), a powerful
framework designed for resolving complex logical problems. By utilising Skolemisation to convert existential vari-
ables into Skolem functions, s(CASP) enables efficient automated reasoning through a clausal format. The important
capability of s(CASP) lies in its ability to generate “justification” trees, which elucidate the rationale behind each
answer, categorising them as true or false and likely or unlikely. This examination addresses the visualisation of jus-
tification trees through Graphviz, facilitating the comprehension of dependencies within the answers. We outline
a systematic approach to produce an answer set in JSON format, followed by the parsing and recursive transfor-
mation of the data into Graphviz-compatible representations. This exploration not only clarifies the structure of
justification trees but also enhances the interpretability of the results obtained from s(CASP) solutions, enriching
the accessibility of automated reasoning methodologies in logic programming.
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What is s(CASP)? It stands for Skolemised Constraint Answer Set Programming. Essentially, it is a sophisticated
method for discovering answers to logical problems, where each answer explains why it is true either by proof,
assumption or abduction2.

Skolemisation substitutes the existential variable ∃𝑦 in the following with a Skolem function 𝑓 (𝑥) which enables
conversion to clausal form for efficient automated reasoning.

∀𝑥 ∃𝑦 𝑃(𝑥, 𝑦) ⟹ ∀𝑥 𝑃(𝑥, 𝑓 (𝑥))

The s(CASP) tool optionally outputs a “justification” tree, describing 𝑤ℎ𝑦 an answer is true, or false; likely, or
unlikely. Every answer has its own tree comprising nodes and edges. Nodes represent facts and goals. Edges show
their dependencies, either supporting or contradicting.

1. The Problem

Start with a super simple example; see below. The example asks, “Who is eligible?” The s(CASP) solver searches
for citizens who are not criminals.
eligible(Who) :- citizen(Who), not criminal(Who).

citizen(alice).
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criminal(bob).

?- eligible(Who).

However, we only present two known facts: Alice is a citizen and Bob is a criminal. We cannot say that Alice is a
criminal; no evidence exists. Nor can we say that Bob is a citizen. That makes Alice likely eligible, but Bob definitely
not.
$ swipl -g "[library(scasp/main)]" -- -s0 --tree citizen.pl

The scasp tool does not automatically generate the justification tree. It outputs only the bindings by default. Use
the --tree option to include the tree.
% Query

?- eligible(Who).
% ����������������������������������������������������������������������

% Answer 1 (0.000 sec)

% ����������������������������������������������������������������������

% Justification

query ←

eligible(alice) ←

citizen(alice) �

not criminal(alice).
% Model

{ citizen(alice), not criminal(alice), eligible(alice)

}
% Bindings

Who = alice

We want to visualise the justification tree. Justification tree in, Graphviz “dot” graph out [1]. That is the problem
in a nutshell. We want a graph with nodes and edges.

2. A Solution

This is the plan in outline: Generate the answer set in JSON. Parse the JSON to extract the justification trees.
Recursively convert the tree nodes into Graphviz nodes and edges.

The complete solution exists on GitHub. Go there to see the details in full. This section describes the highlights.

An s(CASP) justification tree is just a nested tree of nodes and their child nodes. Edges represent “implies” relation-
ships. 𝐶 implies 𝑃 , or 𝐶 ⟹ 𝑃 , where 𝐶 is the child node and 𝑃 is the parent node. Read the inverse as “because;”
that is, 𝑃 because 𝐶 , or 𝑃∵𝐶 in math speak. The tree 𝑇 is a graph of directed edges 𝐸.

(𝑃, 𝐶) ∈ 𝐸

A solution only needs to walk the tree, generating the edges from child to parent in “dot” notation. It needs to
convert the nodes to terms and term strings for Graphviz and generate edges from children to their parents. No
need to worry about the layout. Graphviz will organise the nodes automatically according to layout constraints.

2.1. Reading a justification tree
Prolog makes this initial step easy. Given a source file 𝑆𝑟𝑐, load the JSON as a dictionary.
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read_json_dict(Src, Dict) :-
setup_call_cleanup(open(Src, read, Stream),

json_read_dict(Stream, Dict),
close(Stream)).

The source will not be just a tree. It will be a set of justification trees: one tree for each query.

2.2. Walking the tree using a DCG
A tree is a recursive structure of nodes with sub-node children. What do justification trees look like when rendered

in JSON? Dictionary objects with a list of sub-dictionary children—in a nutshell. See 𝑇 𝑟𝑒𝑒 in Figure 1.

A basic tree walk can become a definite-clause grammar (DCG) where the tree or sub-tree is an argument, and its
difference list becomes a list of Graphviz directives.
json_dot(Dict, Options) -->

answers_dot(Dict.answers, Options_).

answers_dot(Answers, Options) -->
sequence(answer_dot(Options), Answers).

answer_dot(Options, Answer) -->
answer_tree_dot(Answer.tree, Options).

answer_tree_dot(_{node:Node, children:Children}, Options) -->
{ value_term(Node.value, query)

},
sequence(answer_tree_query_dot(Options), Children).

answer_tree_query_dot(Options, Answer) -->
sequence(answer_tree_query_dot(Options), Answer.children).

Each answer is a dictionary of pairs. Every dictionary answer has:

• an answer counter;
• a sub-dictionary of bindings;
• a sub-dictionary of constraints;
• a list of model terms;
• a justification tree; and
• a time.

The top level of each answer has a node atom value of query. It acts as a root node. The children of the root node
constitute its justifications.

2.3. Node values to Prolog terms
Every node has a value. See Figure 1, 𝑁𝑜𝑑𝑒 class.
Node values take the form of a dictionary after loading the JSON. The JSON becomes a Prolog dictionary of dictio-

naries and lists of dictionaries.

See the implementation below. It recursively constructs a 𝑇 𝑒𝑟𝑚 given a node’s 𝑉 𝑎𝑙𝑢𝑒 dictionary. Mapping the
arguments using itself leads to recursion. This implies that each argument could itself map to a sub-compound. The
logic allows for this.
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Figure 1: Results of an s(CASP) solver rendered in JSON
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%! value_term(+Value:dict, ?Term) is semidet.

value_term(Value, Term), is_dict(Value) => dict_term(Value, Term).
value_term(Value, List), is_list(Value) => maplist(value_term, Value, List).

dict_term(Value, Var), _{type:"var",
name:Var} :< Value => true.

dict_term(Value, Atom), _{type:"atom",
value:String} :< Value => atom_string(Atom, String).

dict_term(Value, Value), _{type:"number",
value:Value} :< Value => true.

dict_term(Value, Rational), _{type:"rational",
numerator:Numerator,
denominator:Denominator} :< Value =>

rational(Rational, Numerator, Denominator).
dict_term(Value, Term), _{type:"compound",

functor:Functor,
args:Args} :< Value =>

atom_string(Functor_, Functor),
maplist(value_term, Args, Args_),
Term =.. [Functor_|Args_].

The value_term/2 predicate converts a Prolog dictionary (parsed from JSON) that represents a term into an actual
Prolog term. The predicate deals with cases where the dictionary represents different types of terms, such as vari-
ables, atoms, numbers, rational numbers, and compound terms. It recursively processes the arguments of compound
terms to construct the final term. The predicate handles the following cases:

• If the input is a dictionary representing a variable, it extracts the variable name and returns it as a Prolog
string.

• If the dictionary represents an atom, it converts the string value to a Prolog atom.
• If the dictionary represents a number, it returns the number as is.
• If the dictionary represents a rational number, it constructs a rational term from the numerator and denomi-
nator.

• If the input is a dictionary representing a compound term, it recursively processes the arguments and con-
structs the compound term using the functor and the arguments.

The predicate employs dictionary patternmatching (:<) to safely extract the relevant fields from the dictionary, and
for clarity. It handles nested compounds by recursivelymapping the arguments to value terms. The predicate is semi-
deterministic, meaning it succeeds at most once; if the input dictionary does not match any of the expected patterns,
it fails silently. This allows for safe handling of the JSON structure without raising exceptions for unexpected
formats.

The implementation assumes that the JSON structure follows a specific format, where each term is represented as
a dictionary with a type field indicating whether it is a variable, atom, number, rational, or compound. If the JSON
structure changes or new term types are added, the predicate will require updating.

The value_term/2 predicate is used to convert the JSON representation of terms into Prolog terms, which can then
be used in further processing or output—particularly useful in the context of generating a DOT graph from a JSON
source produced by s(CASP), where terms represent nodes in the justification tree. It is a crucial part of justification
tree processing, allowing the conversion of JSON representations of terms into Prolog terms that can be used to
construct the graph structure, and designed to be used in conjunction with the dict_term/2 helper predicate, which
handles the conversion of a Prolog dictionary (parsed from JSON) into a Prolog term. The dict_term/2 predicate is
responsible for converting the dictionary representation of terms into actual Prolog terms.
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2.4. Printing message lines
The scasp_just_dot module at GitHub adds node and edge styling; true edges receive a solid dark green edge

while “likely” edges render as dotted dark green; similarly, false edges render as dark red while unlikely as dotted
dark red. The underlying DCG generates “message lines” for use by print_message_lines/3.

3. Use Case

So, going back to the original simple “citizen” example. The following commands (i) generate all s(CASP) solutions
with justification, (ii) convert the JSON to Graphviz “dot” format, then finally (iii) render the graph as SVG.
swipl -g "[library(scasp/main)]" -- -s0 --tree --json=citizen.json citizen.pl

swipl -g "[library(scasp/just_dot_main)]" -- citizen.json

dot -Tsvg citizen.dot -o citizen.svg

See the result in Figure 2.

citizen(alice)

eligible(alice)

criminal(alice)

Figure 2: Citizen s(CASP) solution as a graph

Notice the edges. The fact that Alice is a citizen, i.e. citizen(alice), implies that she is eligible. Meanwhile, since
no facts exist to disprove that Alice is a criminal, the justification tree shows an “unlikely” negative implication for
Alice’s eligibility.

4. Conclusions

Justification trees are beneficial. They help a developer to understand why programs behave the way they do. This
can prove crucial in applications that require transparency in reasoning. Diagnostics in safety-critical systems is one
notable example, but not limited to: compliance checking, protocol analysis, fault diagnosis in medical diagnostics,
and so on.

Having the ability to visualise the resulting justification tree helps understand the reasoning behind the logic.
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